"The nearly indestructible ‘moss piglet’ has
proteins that when placed into human cells, protect them from dangerous
radiation."
|
As the hot, record setting year of 2016
sinks away we are left dealing with a planet that has been consistently
increasing temperatures. Climate change
is happening at this very moment. The
planet has always gone through an ebb and flow of environmental conditions and
at the moment we seem to be experiencing a dramatically warming
environment. This warming environment
may be a natural occurrence but it is more than just suggested that humans are
catalyzing the climate change event, causing more severe and rapid weather
changes. While many people are concerned
with slowing down our involvement in climate change, via green movements,
emissions testing, and the like, it may also be wise to consider what we can do
to adapt to a changing environment. Mitigating
our involvement in climate change is a necessity at this point but we could
also be looking into preparations to increase long-term survivability in a
changing and possibly harsher environment.
Some of earth’s organisms already live in a harsh environment. We typically refer to these organisms as
“extremophiles.” By studying these unique
species we may be able to learn more effective ways of preparing ourselves and
the environment for the rapidly changing planet (3).
One
of the organisms we could learn from is the 500 million year old, seemingly
invincible tardigrade, or more adorably known as the “water bear” or “moss
piglet” (1). This organism is microscopic but is an animal
nonetheless. It can survive with no
water for months and even in temperatures ranging from almost absolute zero
(-273°C) to well above boiling (4,5). This amazing animal has been blasted into
space and was able to not only survive in the vacuum of space but managed to
reproduce in that environment (4,5). Recent genetic studies have found a specific
protein that protects the animal from extreme levels of radiation (1,5). Furthermore, this protein was isolated and
then placed into human cells which produced a similar protective result (1,5). While the human cells were not as stout as
the tardigrade cells, this protein was still effective in protecting the DNA from
radiation (5). The ability to protect humans from radiation
could be useful as the planet is being exposed to warmer weather and more solar
radiation. It could also help to protect
people who work around radiation and there is even talk about using this
biotechnology to aid in space travel and colonization (1). Most of this is speculative but it opens up
many possibilities to increase human survival in an ever changing world (5).
The
tardigrade is certainly not the only extremophile that offers hope in a
changing world. The microbial world
offers solutions that we could benefit from as well. For example, the organism known as Deinococcus peraridilitoris comes from
one of the driest places on earth (3). It survives on basically no water intake (3). Learning from its genetics could help us to
engineer agricultural plants to survive on less water, which could help farmers
around the world. Other organisms, like Pyrodictium abyssi, are thermophiles and
thrive at extremely high temperatures (3). Similar genetic research could lead to
bioengineering plants to survive at the ever increasing temperatures of the
earth. There are other organisms like
those on the Andes Mountains of Peru that are adapting to live in warmer
environments (3). In this area, glaciers are receding but organisms
are finding ways to grow, which could aid our understanding of how different
organisms are adapting to the changing environment (3).
"Adaptations of the Atlantic molly could teach humans how to cope in a
more toxic, polluted world." Source: http://www.science.tamu.edu/news/story.php?story_ID=768#.WKf6g3-wQk0 |
Humans
are not the only organisms learning how to deal with human-induced climate
change and pollution. The Atlantic molly
is an extremophile fish that can live in highly toxic waters where most other
organisms cannot survive (2). This fish has an adaptation to make the
typically toxic sulfide compounds inert once they enter the fish’s body (2). They are able to take what should be a poison
and break it down into energy (2). By studying this fish we can see how
ecosystems change and adapt to environmental changes (2). Again this is a genetic adaptation that could
possibly have benefits for humans. If we
could bioengineer plants to live in more toxic environments we could grow food
in more inhospitable places. An
understanding of this genetic adaptation could also assist humans to deal with
the increasing levels of pollution.
While
most of these concepts are speculative they certainly offer hope. The obvious answer to climate change problems
would be to stop, or at least delay climate change, but that might not be an
option at this point. Education and
legislation could aid in slowing down the effects of human-induced climate
change but there is likely no turning back from a certain level of change. The best answer might not be the only answer
though. Plenty of organisms have adapted
to live in harsh environments here on earth.
If we could harness some of that information we could use it to aid our
survival or production of food if the earth becomes a harsher place to
live. As opposed to basic damage control,
we could learn from natural selection and use our innovation abilities to adapt
ourselves and our environment to the world of climate change.
References
#1 - Feltman, R. (2016, September 20). Water
bears’ latest superpower: Proteins that protect them from radiation. The Washington Post. Retrieved from https://www.washingtonpost.com/news/speaking-of-science/wp/2016/09/20/water-bears-latest-superpower-proteins-that-protect-them-from-radiation/?utm_term=.1486c0d2db36
#2 - Kansas State
University. (2016, February 10). Genetics help fish thrive in toxic
environments, collaborative study finds. Science Daily. Retrieved from
www.sciencedaily.com/releases/2016/02/160210135209.htm
#3 - Novey, L. (2009,
October 18). How extremophiles might help us save the world. The Huffington Post. Retrieved from http://www.huffingtonpost.com/levi-novey/how-extremophiles-might-h_b_275037.html
#4 - Rajeshwari, A. (2016, May 31). Tardigrade:
The animal that can return from the dead. The
Times of India. Retrieved from http://timesofindia.indiatimes.com/home/science/Tardigrade-The-animal-that-can-return-from-the-dead/articleshow/52524477.cms
#5 - Tauger, N. & Gill, V. (2016,
September 20). Survival Secret of ‘Earth’s hardiest animal’ revealed. BBC News. Retrieved from http://www.bbc.com/news/science-environment-37384466
No comments:
Post a Comment